CARBON TAXATION IN THE WORLD

Xavier Labandeira

FSR Climate, EUI

Energy/Carbon Taxation and Climate Policies: A Scoping Meeting for FSR Climate Florence, 12 December 2014

Contents

- **Carbon taxes and climate policy in IPCC AR5**
- Issues for actual implementation
- **Experiences**
- Evaluating experiences
- o (preliminary) Conclusions

Carbon taxes and climate policy in AR5

- Chapter 2 (Integrated risk and uncertainty assessment):
 CBA/CE, status quo, innovation benefits
- Chapter 3 (Social, economic and ethical concepts): cobenefits, double dividend, 'efficient' instrument, innovation benefits
- Chapter 6 (Assessing transformation pathways): costeffectiveness, innovation benefits
- Chapter 7 (Energy systems): progressivity in developing countries; efficient instrument

Carbon taxes and climate policy in AR5

- Chapter 8 (Transport): efficient instrument but should be large
- **Chapter 9 (Buildings): 'Key' instrument**
- Chapter 12 (Human settlements, infrastructure and spatial planning): less effective than policies to foster population density and infrastructure use charges
- Chapter 13 (International cooperation: agreements and instruments): a possible international carbon tax, easy coordination, hybrid approaches

Carbon taxes and climate policy in AR5

- Chapter 15 (National and subnational policies): effective in practice, attractive instruments, less applications than expected, important role of nonexplicit carbon taxes, difficulties for empirical assessment
- Chapter 16 (Cross-cutting investment and finance issues): revenue-raising role, promotion of low-carbon investments

Issues for actual implementation

- Tax base: potentially most GHG emissions, carbon emissions; product; upstream/downstream; the role of exemptions (competitiveness, interactions, etc.)
- **Tax rate: Pigouvian approach; exogenous target; evolution**
- Revenues: Budget; earmarked; revenue-neutral
- Jurisdictional allocation
- **Border tax adjustments**
- Carbon taxes and pre-existing energy taxes

Issues for actual implementation

- **Three generations of green tax reforms:**
 - Scandinavian model (1990s): Carbon taxes and income taxation
 - German model (2000s): Energy taxes and labour taxes
 - New approaches (2008-): Variable recycling
- Assessing carbon taxes and GTRs:
 - Environmental effectiveness
 - Economic effects
 - Distribution

- **Given Service** Finland (1990)
 - Fossil fuels
 - Tax rate: 35€/tCO2e (2013)
 - -4 million tCO2 between 1990-1998
- Netherlands (1990)
 - Mineral oil excises, energy taxes (heating & motor fuels), motoring (sales of motor vehicles, user taxes)
 - -(1.7-2.7) million tCO2 in 2000 (5% of emissions covered)

- **Norway (1991)**
 - Gasoline, light and heavy fuel oil, and oil and gas in the North Sea
 - Tax rate: 4.69 \$/tCO2e (2013)
 - The tax cover approximately 68% of Norway's CO2 emissions
- **Sweden (1991)**
 - Natural gas, gasoline, coal, light and heavy fuel oil, LPG, heating oil
 - Tax rate: 168 \$/tCO2e (2014)
 - -15% CO2 emissions between 1990-1995

- **Denmark (1992)**
 - Fossil fuels
 - Tax rate: 31€/tCO2e (2014)
 - -15% carbon emissions per capita between 1990-2005
- Costa Rica (1997)
 - Fossil fuel
 - **Tax rate: 3,5% of the market value of fossil fuels**
 - Payment for Environmental Services program

- **United Kingdom (2001)**
 - Natural gas, coal, electricity and LPG
 - Tax rate: 15.75 \$/tCO2e (2014)
 - Carbon price floor (2013) on fossil fuels used to generate electricity
- **Boulder, Colorado (2007)**
 - Electricity
 - Revenues: climate action plan that pomotes energy efficiency, renewable energy, and reductions in vehicle miles traveled

- **Quebec (2007)**
 - Gasoline, diesel, propane and coal
 - Green fund which supports reductions in GHG emissions and improvements to public transportation
- **British Columbia (2008)**
 - Transportation fuels, natural gas, fuels used in industrial processes
 - Tax rate: 30 Canadian \$/tCO2e (2012)

- **Switzerland (2008)**
 - Fossil fuels (except transportation fuels)
 - Tax rate: 68\$/tCO2e (2014)
 - Lump-sum transfers, funding renovation and insulation of buildings
- □ Ireland (2010)
 - All energy products except electricity
 - Tax rate: 20 €/tCO2e (2013)
 - Fiscal consolidation

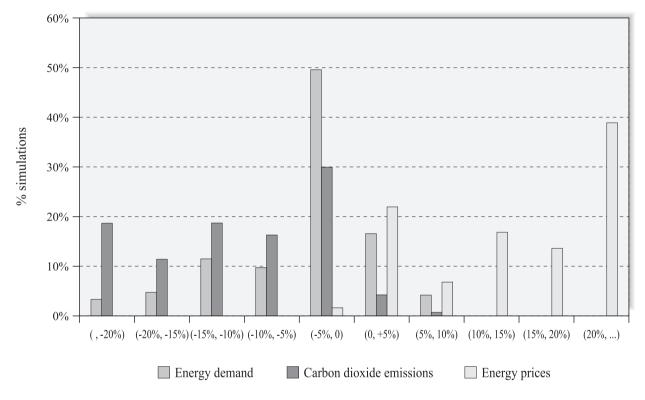
- **Iceland (2010)**
 - Liquid fossil fuels
 - Tax rate: 10€/tCO2e (2014)
 - 75% EU ETS price
- □ Australia (2012)
 - Coordinated energy-environmental taxes and ETS
 - Revenues: income tax cuts, protecting industrial competitiveness, funding renewable and energy efficiency investments, R&D
 - Abolished in 2014

- **Japan (2012)**
 - Fossil fuels
 - Tax rate: 2 \$/tCO2e (2014)
- **•** Mexico (2012)
 - Fossil fuels sales and imports
 - Additional amount of emissions relative to natural gas emissions
 - Tax rate: 10-50 Mex\$/tCO2e (2014)

- **France (2014)**
 - Household use of gas, heating oil and coal (transport fuels in 2015)
 - Tax rate: 7€/tCO2e (2014)
 - Revenues: funding energy transition
- **South Africa (2016)**
 - Fuel input tax
 - Tax rate: 120 Rand/tCO2e (2016)
 - 10% per year increase until 2019

COUNTRY	CHARACTERISTICS	
Finland (1990)	Tax rate: 35€/tCO2e (2013) Fossil Fuels	
Netherlands (1990)	Mineral oils, energy, motoring -5% emissions covered in 2000	
Norway (1991)	Tax rate: 4.69\$/tCO2e (2013) Gasoline, light & heavy fuel oil, oil & gas in the North Sea	
Sweden (1991)	Tax rate: 168\$/tCO2e (2014) NG, gasoline, coal, light & heavy fuel oil, LPG, heating oil	
Denmark (1992)	Tax rate: 31\$/tCO2e (2014) Fossil fuels	
Costa Rica (1997)	Tax rate: 3,5% of market value of fossil fuels Payment for Environmental Services program	
United Kingdom (2001)	Tax rate: 15.75\$/tCO2e (2014) NG, coal, electricity and LPG	
Boulder, Colorado (2007)	Electricity Promotion energy efficiency, renewable energy, reduction in VMT	
Quebec (2007)	Gasoline, diesel, propane and coal Green fund to reductions in GHG and improvements to public trans.	
British Columbia (2008)	Tax rate: 30 Canadian \$/tCO2e(2012) Transportation fuels, NG, fuels used in industrial processes	
Switzerland (2008)	Tax rate: 68\$/tCO2e (2014) Fossil fuels (except transport fuels)	
Ireland (2010)	Tax rate: 20€/tCO2e (2013) All energy products except electricity	
Iceland (2010)	Tax rate: 10€/tCO2e (2014) Liquid fossil fuels	
Australia (2012)	Coordinated energy-environmental taxes and ETS Abolished in 2014	
Japan (2012)	Tax rate: 2\$/tCO2e (2014) Fossil fuels	
Mexico (2012)	Tax rate: 10-50 Mex\$/tCO2e (2014) Fossil fuels sales and imports	
France (2014)	Tax rate: 7€/tCO2e (2014) Household use of gas, heating oil and coal (transport fuels in 2015)	
South Africa (2016)	Tax rate: 120 Rand/tCO2e (2016) Fuel input tax	

Table 2. Overview of Carbon Tax Policies


Country/ Jurisdiction	Start Date	Tax Rate (\$USD unless noted otherwise)	Annual Revenue	Revenue Distribution
Finland	1990	\$30/metric ton CO₂ (€20)	\$750 million (€500 million)	Government budget; accompanied by independent cuts in income taxes
Netherlands	1990	~ 20 /metric ton CO ₂ in 1996	\$4.819 billion ^ª (€3.213 billion)	Reductions in other taxes; Climate mitigation programs
Norway	1991	\$15.93 to \$61.76/metric ton CO ₂ (NOK 89 to NOK 345)	\$900 million (1994 estimate)	Government budget
Sweden	1991	Standard rate: \$104.83/metric ton CO ₂ (910 SEK) Industry rate: ~\$23.04/metric ton CO ₂ (~200 SEK)	\$3.665 billion (25 billion SEK)	Government budget
Denmark	1992	\$16.41/metric ton CO ₂ (90 DKK)	\$905 million	Environmental subsidies and returned to industry
United Kingdom	2001	\$0.0078/kWh for electricity; \$0.0027/kWh for natural gas provided by gas utility; \$0.0175/kg for liquefied petroleum gas or other gaseous hydrocarbons supplied in a liquid state; and \$0.0213/kg for solid fuel	\$1.191 billion (£714 million)	Reductions in other taxes
Boulder, CO	2007	\$12-13 per metric ton CO ₂	\$846,885	Climate mitigation programs
Quebec	2007	3.20 per metric ton of CO ₂ (C 3.50)	\$191 million (C\$200 million)	Climate mitigation programs
British Columbia	2008	9.55 per metric ton of CO_2 in 2008 (C\$10), increasing \$4.77 (C\$5) annually to \$28.64 (C\$30) in 2012	\$292 million (C\$306 million)	Reductions in other taxes
BAAQMD, California	2008	0.045 per metric ton of CO_2e^b	\$1.1 million (expected)	Climate mitigation programs
France	proposed	\$24.74 per metric ton of $CO_2 (\in 17)$	\$4.499 billion (€3 billion) expected	Reductions in other taxes
CARB, California	proposed	0.155 per metric ton CO ₂ e in FY 2010-11, dropping to 0.09 per metric ton CO ₂ e in 2014	\$63.1 million 2010- 2013; \$36.2 million starting in 2014, expected	Climate mitigation programs

^a Revenue in the Netherlands is from all environmentally related taxes, of which carbon taxes are the clear majority.
 ^b CO₂e is carbon dioxide equivalent.

Sumner et al. (2009)

Evaluating experiences

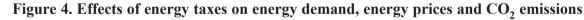


Table 6. Estimated Emissions Reductions in Jurisdictions with Carbon Taxes ^a

Unless otherwise noted, decreases in emissions represent total emission reductions, not emission reductions that are due to a carbon tax.

Jurisdiction	Start Date	Change in CO ₂ Emissions	Source
Finland	1990	Emissions were 7% lower in 1998 than they would have been without a tax.	Prime Minister's Office Finland (2000)
Netherlands	1990	Emissions were expected to be reduced by 1.7 to 2.7 million metric tons $C0_2$ annually in 2000. In covered sectors, emissions were expected to be reduced by approximately 5%.	Netherlands Ministry of Housing, Spatial Planning and the Environment (n.d.)
Norway	1991	Emissions increased by 15%—and GDP increased 70%— from 1991 to 2008.	Abboud (2008)
Sweden	1991	Emissions were reduced by about 15% from 1990 to 1996 because of the carbon tax.	Johansson (2000)
		Emissions decreased by 9% from 1990 to 2006. Emissions decreased by more than 40% from the mid- 1970s to 2008.	Ministry of the Environment, Sweden (2008)
Denmark	1992	Emissions decreased by 15% per capita from 1990 to 2005.	Prassad (2008)
United Kingdom	2001	Emissions decreased by more than 58 million metric tons CO_2 from 2001 to 2005. Emissions are expected to be reduced by 12.8 million metric tons CO_2 per year (15% of commercial and public sector energy demand) in 2010 because of the Climate	Cambridge Econometrics (2005) cited in Her Majesty's Treasury (2008:101)
		Change Levy.	
Boulder, CO	2007	Emissions in 2007 and 2008 decreased from 2006 levels. Greatest reductions due to programs funded by the carbon tax:	City of Boulder (2009b
		 Renewable energy activities (60,000 metric tons CO₂e) 	
		 Transportation (33,000 metric tons CO₂e) 	
		• Energy efficiency (6,700 metric tons CO ₂ e)	
Quebec	2007	Emissions were expected to be reduced by 11.2 million metric tons CO_2 by 2012 due to the carbon tax.	Quebec (2008)
British Columbia	2008	GHG emissions were expected to be reduced emissions by up to 3 million metric tons CO_2 annually in 2020 due to the tax.	Ministry of Finance, British Columbia (2008

Evaluating

Experiences

France and CARB each proposed but have not implemented a program.

Sumner et al. (2009)

Evaluating experiences (ex post)

- Martin et al (2014). Climate change levy UK. Strong negative impact on energy intensity and use of electricity
- Vollebergh (2008). Energy tax reform in Netherlands. Considerable amount of environmental tax revenue
- Lin and Li (2011). Northern European carbon taxes. Stronger effectiveness of the Finish tax due to exemptions in other countries
- Rivers and Schaufele (2014). Carbon tax BC. No competitiveness effects on agricultural products

Evaluating experiences (ex post)

- Bruvoll & Larsen (2004). Carbon tax Norway. Reduction of emissions per unit of GDP, but limited in comparison to other factors
- Hammar et al (2013). Sweden's CO2 tax. Major impact on fuels used for heating purposes.
- Johansson (2000). Carbon tax Sweden. Reduction in emissions due to tax reform, increase of biomass use
- **Bohlin (1998). Idem**

Conclusions

- **Carbon taxes: a preferred policy instrument for climate policies**
- **Easy to implement**
- **Several**, heterogeneous, and limited applications
- Modest effects
- □ Importance of energy taxation...

Conclusions

In some countries, tax-based policies specifically aimed at reducing GHG emissions—alongside technology and other policies—have helped to weaken the link between GHG emissions and GDP (*high confidence*). In a large group of countries, fuel taxes (although not necessarily designed for the purpose of mitigation) have effects that are akin to sectoral carbon taxes [Table 15.2]. The demand reduction in transport fuel associated with a 1 % price increase is 0.6 % to 0.8 % in the long run, although the short-run response is much smaller [15.5.2]. In some countries revenues are used to reduce other taxes and/or to provide transfers to low-income groups. This illustrates the general principle that mitigation policies that raise government revenue generally have lower social costs than approaches which do not. While it has previously been assumed that fuel taxes in the transport sector are regressive, there have been a number of other studies since AR4 that have shown them to be progressive, particularly in developing countries (*medium evidence, medium agreement*). [3.6.3, 14.4.2, 15.5.2]

IPCC (2014) Summary for Policymakers, AR5

References (1)

- Bohlin, F., 2000. The Swedish carbon dioxide tax: effects on biofuel use and carbon dioxide emissions. Biomass and Bioenergy, 15, 283-291
- Bruvoll, A., Larsen, B.M., 2004. Greenhouse gas emissions in Norway: do carbon taxes work? Energy Policy, 32, 493-505.
- Gago, A., Labandeira, X., López-Otero, X., 2014. A panorama on energy taxes and green tax reforms. Hacienda Pública Española/Review of Public Economics, 208, 145-190.
- Hammar, Henrik; Sterner, Thomas; Åkerfeldt, S., 2013. Sweden's CO2 tax and taxation reform experiences In . Genevey, R.; Pachauri, R.; Tubiana, L. (Eds.). Reducing Inequalities: A Sustainable Development Challenge
- Johansson, B., 2000. The carbon tax in Sweden, in OECD, Innovation and the Environment, OECD Publishing
- Martin, R., de Preux, L.B., Wagner, U.J., 2014. The impact of a carbon tax on manufacturing: evidence from microdata. Journal of Public Economics, 117, 1-14

References (2)

- Lin, B., Li, X., 2011. The effect of carbon tax on per capita CO2 emissions. Energy Policy, 39, 5137-5146
- Metcalf, G.E., Weisbach, D., 2009. The design of a carbon tax. Harvard Environmental Law Review, 33, 499-556
- Rivers, N., Schaufele, B., 2014. The effect of carbon taxes on agricultural trade. Canadian Journal of Agricultural Economics, in press.
- Sumner, J., Bird, L., Smith, H., 2009. Carbon taxes: a review of experience and policy design considerations. Technical Report NREL/TP-6A2-47312
- Vollebergh, H., 2008. Lessons from the polder: Energy tax design in The Netherlands from a climate change perspective. Ecological Economics, 64, 660-672
- World Bank, 2014. Putting a price on carbon with a tax.

