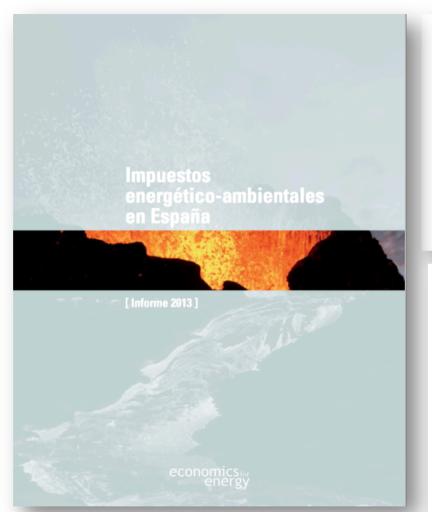
Crisis and Reform of Road Transport Taxation


Xavier Labandeira

Universidade de Vigo and Economics for Energy

19th Global Conference on Environmental Taxation CEU, Madrid, 28 September 2018

Universida_{de}Vigo

economics for energy

Hacienda Pública Española / Review of Public Economics, 208-(1/2014): 145-190 © 2014, Instituto de Estudios Fiscales DOI: 10.7866/HPE-RPE.14.1.5

A Panorama on Energy Taxes and Green Tax Reforms*

ALBERTO GAGO**
XAVIER LABANDEIRA**
XIRAL LÓPEZ-OTERO**
Universidade de Vigo and Economics for Energy

Received: September, 2013 Accepted: July, 2014

Summary

WP FA04/2012

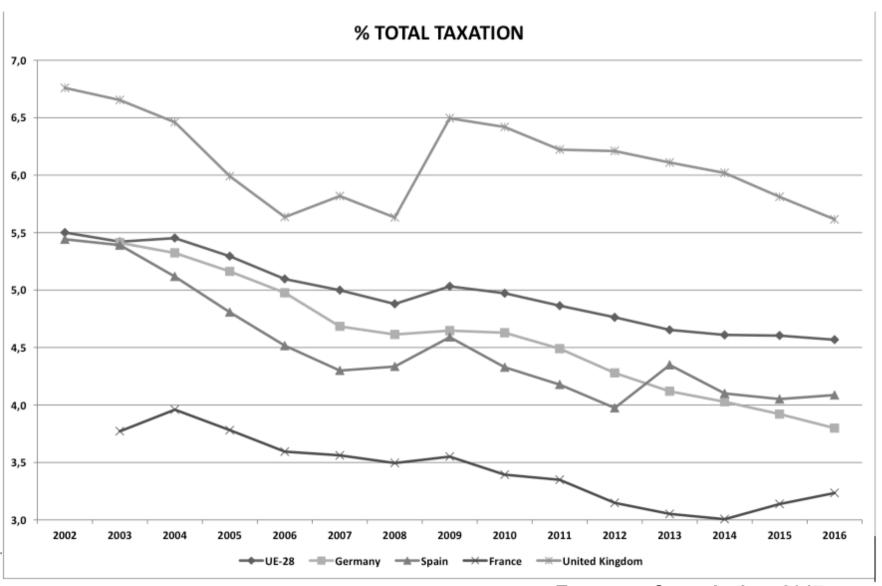
Climate Change, Buildings and Energy Prices

Alberto Gago, Michael Hanemann, Xavier Labandeira, Ana Ramos

Conventional approach

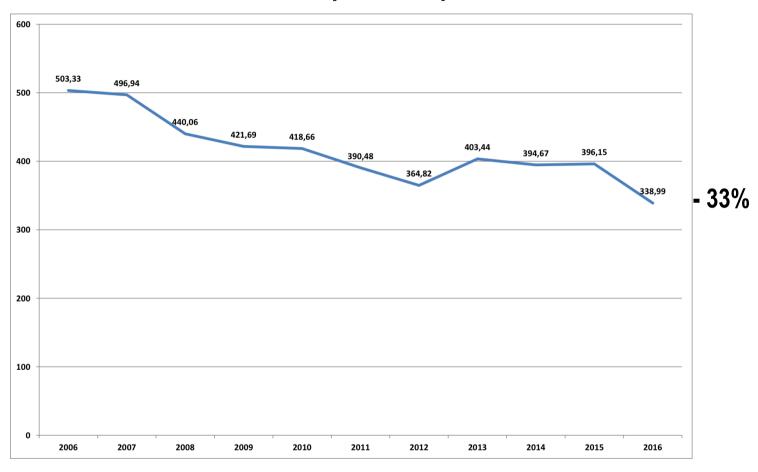
- Revenue Raising (Ramsey)
- Externality correction
 - Global and local environmental problems
 - Congestion
 - Accidents, etc.
- Energy dependence

Taxes on registration, circulation, fuels + congestion charges


Externalities and tax correction

- How to combine different tax instruments?
- Which tax levels?
- New proposals on access and congestion
- Distributional effects
 - Are they relevant?
 - How to compensate them?
- Taxes in a wider context:
 - Subsidies
 - Standards: synergies?
 - Plate-access; bans

Changes in transport


- Energy efficiency remarkable improvements (and potentials)
- Alternative technologies (EV, etc.)
- Less interest in property?
- Digitalization and new transport alternatives:
 - Car sharing
 - Self-driving cars

Crisis

European Commission, 2017

Tax revenue per car, Spain

Agencia Tributaria, 2018

External costs of transport

Туре		Paper	Year	Country	% GDP
Congestion		Delucchi (1997)	1991	U.S.	0.55 -2.36
		Winston and Langer (2006)	1996	U.S.	0.32
		Van Essen et al. (2011)	2008	EU, Norway and Switzerland	1.10-1.80
		Cravioto et al. (2013)	2006	Mexico	1.04-1.05
		BITRE (2015)	2010	Australia	0.94
		BITRE (2015)	2015	Australia	1.13
		Schrank et al. (2015)	1982	U.S.	0.59
		Schrank et al. (2015)	2014	U.S.	0.92
		Keller (2018)	2015	Switzerland	0.29
		DMT (2004)	2000	Denmark	0.15
		Fisher et al. (2007)	2001	New Zealand	0.24
	Local	Van Essen et al. (2011)	2008	EU, Norway and Switzerland	0.39
		Cravioto et al. (2013)	2006	Mexico	0.61-0.62
		OECD (2014)	2010	OECD	1.97
Air		Guo et al. (2010)	2004	China	0.52
Pollution		Guo et al. (2010)	2008	China	0.58
Poliution	Global	DMT (2004)	2000	Denmark	0.11
		Van Essen et al. (2011)	2008	EU, Norway and Switzerland	0.97
		Cravioto et al. (2013)	2006	Mexico	0.99- 1.00
		lvkovic et al. (2018)	2013	Serbia	0.20
	Total	GEA (2018)	2008	Germany	1.93
		GEA (2018)	2014	Germany	1.78
Accidents		López et al. (2004)	1997	Spain	1.35
		DMT (2004)	2000	Denmark	0.49
		Van Essen et al. (2011)	2008	EU, Norway and Switzerland	1.75
		Cravioto et al. (2013)	2006	Mexico	1.32-1.34
Noise		DMT (2004)	2000	Denmark	0.65
		Van Essen et al. (2011)	2008	EU, Norway and Switzerland	0.13
		Cravioto et al. (2013)	2006	Mexico	0.42-0.43

How to proceed?

- (1) Giving up
- (2) Trying to fix the current system
 - Adjusting fuel taxes to all pollutants
 - Salience through registration tax? Feebates?
 - Extending congestion charges
- Still, not an easy task: Spain these days...
 - Low tax levels but...
 - □ Diesel taxes seen as unfair, sometimes affecting 'clean' cars
 - Huge exemptions advanced
 - Revenue effects?

Meta-analyses of price elasticities of car fuels

Study	Product	Elasticity
Espey (1996)	Gasoline	-0.65 (LT)
Espey (1998)	Gasoline	-0.16 (ST) -0.81 (LT)
Hanly et al. (2002)	Car fuels	-0.76 (ST) -1.16 (LT)
Graham y Glaiter (2002)	Car fuels	-0.25 (ST) -0.77 (LT)
Brons et al. (2008)	Gasoline	-0.36 (ST) -0.81 (LT)
Havranek et al. (2012)	Gasoline	-0.09 (ST) -0.31 (LT)
Labandeira et al. (2017)	Gasoline	-0.15 (ST) -0.77 (LT)
Labandena et al. (2017)	Diesel	-0.29 (ST) -0.44 (LT)

WP 02/2018

Deep reforms in electricity pricing: evidence from a quasi experiment

Xavier Labandeira José M. Labeaga Jordi Teixidó

Energy Economics

Volume 40, Supplement 1, December 2013, Pages S126-S133

Transport and low-carbon fuel: A study of public preferences in Spain

Maria L. Loureiro ^a A ™, Xavier Labandeira b, c ™, Michael Hanemann d ™

⊞ Show more

https://doi.org/10.1016/j.eneco.2013.09.010

Get rights and content

Highlights

- Road transport is the cause of important energy-related problems, particularly the emission of greenhouse gases and local pollution.
- This paper explores public attitudes and preferences towards low-carbon fuel policies in Spain via contingent valuation.
- A factor analysis is performed, showing the existence of pro-social and economic factors related to preferences for policies.
- Drivers were willing to pay an extra of 115.5 Euros per year for low-carbon fuels, roughly an extra 0.07 (0.08) Euros/liter for gasoline (diesel).
- The results encourage the use of these low-GHG policies as feasible alternatives for climate policies in the transport area.

How to proceed?

- (3) A new system for taxing road transport
 - Heavily based on vehicle characteristics
 - Able to discriminate in time and location
 - Able to act as a km tax
 - Able to keep revenues
- Not writing on a blank sheet:
 - Singapore (1975): Technical feasibility
 - Stockholm (2006): How to get public support
 - Oregon (2015): The importance of testing and transition

Marginal external costs of vehicle use

Externality	Fuel	Type of road	MEC (€ct/vkm)	
Congestion	All	Motorway (metropolitan) Main (metropolitan) Other (metropolitan) Main (urban) Other (urban) Motorway (rural) Main (rural) Other (rural)	26.8-61.5 141.3-181.3 159.3-242.6 48.7-75.8 139.4-230.5 13.4-30.8 18.3-60.7 42.0-139.2	
	Diesel	Urban Sub-urban Rural Motorway	0.7-10.3 0.3-3.4 0.2-1.2 0.2-1.3	
Local pollution	Gasoline	Urban Sub-urban Rural Motorway	0.4-3.8 0.1-3.5 0.1-2.8 0.1-3.5	
	Electricity	Urban Rural	0.72 0.99	
	Diesel	Urban Rural Motorway	1.6-3.0 1.1-2.3 1.2-2.7	
Global pollution	Gasoline	Urban Rural Motorway	2.4-3.9 1.4-2.3 1.5-2.3	
Accidents	Electricity	Average Motorway Uban Other	1.7 0.1 0.3 0.2	
Noise	Conventional	Urban (day) Urban (night) Rural (day) Rural (night)	0.88-2.14 1.61-3.89 0.01-0.02 0.01-0.04	
NOISE	Electricity	Urban (day) Urban (night) Rural (day) Rural (night)	0.88-2.14 0.80-1.95 0.01-0.02 0.01-0.03	

Korzhenevych et al., 2014; Jochem et al., 2016

Comprehensive and Automated Vehicle Tax (CAVT)

	Zone 1 (urban)	Zone 2 (semi-urban)	Zone 3 (non-urban)
Vehicle type A	Peak Access charge 1 Time charge 1a () km charge	Peak Time charge 2a () km charge	km charge
	Non-peak km charge	Non-peak km charge	
Vehicle type B	()	()	()

Vehicle type A	Payment					
		Congestion	Local P/ noise	Global P	Accidents	Infrastructures
Access charge	Euros	Χ	-	-	-	-
Time charge 1a	Euros/hour	Х	Х	-	-	-
km tax	Euros/km	-	Х	Χ	Х	X

Some comments

- Benefits
 - Better internalization, also applicable to old vehicles
 - Revenue potentials (different government levels)
 - From energy to vehicle-customized taxation (electricity)
- Sub-optimal (feasibility)
 - How to aggregate vehicle types?
 - How to approximate external costs?
 - Rebound effects?
- Interesting to combine with purchase taxation (VAT + registration)
 - Salience
 - 'Ability to pay'

Some comments

- Transition
 - □ 1st phase: Conventional tax reform + pilot experiences
 - 2nd phase: General application and tax substitution. Compensations
- Viable?
 - Privacy
 - Distributional impacts? Able to define precise compensations
 - International issues
 - Only for developed countries?
- Need of a comprehensive assessment and <u>experimental</u> <u>approaches</u>:

FOSTERING ENERGY EFFICIENCY IN THE RETAIL SECTOR: A FIELD EXPERIMENT

XAVIER LABANDEIRA MARIA LOUREIRO

THANKS

http://labandeira.eu

xavier@uvigo.es